Osteogenin, an extracellular matrix component of bone, is a heparin binding differentiation factor that initiates endochondral bone formation in rats when implanted subcutaneously with an insoluble collagenous matrix. We have examined the interaction of Osteogenin with various extracellular matrix components including basement membranes.
Osteogenin, purified from bovine bone, binds avidly to type IV collagen and to a lesser extent to both type I and IX collagens. Osteogenin binds equally well to both native and denatured type IV collagen. Both alpha 1 and alpha 2 chains of type IV collagen are recognized by Osteogenin. Osteogenin binds to a collagen IV affinity column, and is eluted by 6.0 M urea with 1 M NaCl, pH 7.4, and the eluate contained the osteogenic activity as demonstrated in vivo. Binding of osteogenin to collagen IV is not influenced by either laminin or fibronectin. These results imply that Osteogenin binding to extracellular matrix components including collagens I and IV and heparin may have physiological relevance, and such interactions may modulate its local action.