Ricerca Scientifica

TYPE I COLLAGEN-INDUCED OSTEOBLASTIC DIFFERENTIATION OF BONE-MARROW CELLS MEDIATED BY COLLAGEN-ALPHA2BETA1 INTEGRIN INTERACTION

2000
Autore : Mizuno M., Kuboi Y., Fujisawa R.

Type I collagen matrix gels induce osteoblastic differentiation of bone marrow cells.

Bone marrow cells are multipotent cells. When bone marrow cells were cultured with type I collagen matrix gels, they showed high alkaline phosphatase activity, collagen synthesis, and formed mineralized tissues. Furthermore, cells expressed osteocalcin and bone sialoprotein genes, which are osteoblast-specific genes. These findings indicate that type I collagen matrix gels induce osteoblastic differentiation of bone marrow cells.

Type I collagen interacts with the alpha 2 beta 1 integrin receptor on the cell membrane and mediates extracellular signals into cells. DGEA peptide is a cell-binding domain of type I collagen molecule. When collagen-integrin interaction was interrupted by the addition of Asp-Gly-Glu-Ala (DGEA) peptide to the culture, the expression of osteoblastic phenotypes of bone marrow cells was inhibited. Furthermore, anti-alpha 2 integrin antibody, which interacts with alpha subunit of integrin and blocks the binding of integrin with collagen, suppressed the expression of osteoblastic phenotypes. These findings imply that collagen-alpha 2 beta 1 integrin interaction is an important signal for the osteoblastic differentiation of bone marrow cells.

Journal of Cellular Physiology
Logo Bioteck Academy


Vicenza
Sede Amministrativa e legale
via E. Fermi, 49
36057 Arcugnano, Vicenza (VI) - Italia
Tel. +39 0444 289366
Fax: +39 0444 285272


Contattaci


Torino
Centro Polifunzionale di produzione
Via G. Agnelli, 3
10020 Riva presso Chieri, Torino (TO) - Italia

Copyright © 2022 Bioteck S.p.A. - Privacy Policy - Cookie Policy