The aim of this work was to test the effectiveness of using enzymatically deantigenated equine bone block as a scaffold for guided bone regeneration (GBR) during a horizontal augmentation of the lower jaw.
A partially edentulous atrophic mandible was augmented using an equine-derived block with an expanded polytetrafluoroethylene membrane. After 8.5 months, two bone core samples were collected at the augmentation site, and implants were placed. A definitive prosthesis delivered 6 months after implant placement provided excellent functional and aesthetic rehabilitation throughout the follow-up period. Histological and histomorphometrical analysis of the biopsies showed newly formed bone to be present and the residual biomaterial was still undergoing remodeling. Comparison of cone beam computed tomography scans taken before augmentation and 26 months later showed maintenance of ridge width and possible corticalization of the vestibular augmented ridge side. The equine-derived bone block placed in accordance with GBR principles provided a successful clinical, radiographic, and histological outcome.